当前位置:HOME > 本站论坛
问卷调查的统计分析方法

问卷调查的统计分析方法

问卷调查是体育科研中一个常用的方法。对问卷调查获得的信息进行统计分析后,可以为科学决策提供重要的依据。

例如:每5年一次的国民体质监测,都要对每一个监测对象进行问卷调查,以便了解我国城乡居民参加体育锻炼的基本状况,为推进全民健身提供科学决策依据。在许多体育研究的课题中也广泛采用问卷调查的方法,将调查的数据统计后作为撰写研究论文中各种论点的依据。

但是,许多问卷调查的统计分析,存在两个值得注意的问题。

1. 调查的样本量太小计算出的结论可靠性不高。

例如看到一些研究生的论文,只发了几十份问卷调查表,就根据统计到的百分比写下十分肯定的结论。其实,是有问题的。

例如:调查“你对××活动喜欢的程度”,调查了45人。调查结果:非常喜欢2人,喜欢5人,一般10人,不太喜欢13人,不喜欢15人。作者统计出:喜欢和非常喜欢的共7人占调查人数45人的15.5%,不太喜欢和不喜欢的共28人,占62.2%。并根据15.5%62.2%来进一步写结论。

但是,他忽略了调查的样本计算出率以后,还应该计算率的标准误和置信区间。如本例喜欢率为15.5%。还应该计算率的标准误Sp

                           _________    _________________

本例,喜欢率的标准误 Sp =P(1-P)/n = 15.5(100-15.5)/45 = 5.39 % 

按样本量n查t值表上, n-10.01和t0.05 的值,查得t0.052.02 , 0.012.69, 根据喜欢率15.5 %、标准误5.39 % 0.05的值,可计算出:

95% 置信区间:15.5±2.02×5.394.6%26.4%(置信区间上下限的差值高达21.8%)

95% 置信区间的含义是,如果用样本的喜欢率15.5%来估计总体的喜欢率时,有95%的可能是在4.6%26.4%的区间之间。这样高达21.8%的区间意味着15.5%是不太可信的。

但是,如果扩大样本量到450人,4500人,而统计出的喜欢率也是15.5%。由于调查的样本量扩大了,标准误 Sp会缩小,计算出的95% 置信区间也就缩小为12.2%18.8%14.4%16.6%。这时用样本率估计总体率时,上下限的差值很接近15.5%,才是可信的。

2. 调查数据的统计分析过于简单。

目前看到的调查数据统计分析大都比较简单。只是计算各个问卷指标的百分比,如上面举例的喜欢率15.5%等等

要避免统计分析过于简单,首先,在做调查表设计时,就事先要考虑好调查数据的统计分析方法。例如同样是调查你对××活动喜欢的程度”,除了要扩大调查样本量外,在调查表中增加调查性别和年龄。这样就可以采用一种较为复杂的方法——交叉分析。交叉分析是分析年龄性别和“对××活动喜欢程度”三个变量之间的关系。假设不分类统计时,喜欢率是15.5%交叉分析后就会发现由于性别的不同,年龄段的不同喜欢率是不同的。

例如:2005年国民体质监测问卷调查中,对“睡眠时间”的统计分析,如果只是简单地计算某市成年男子2473人的问卷,只能统计出:睡眠6小时以下的人为13.4%,睡眠69小时的73.6%,睡眠9小时以上的13%。但是,如果增加年龄因素,分年龄段进行统计就可以看到,各年龄段的百分比是不同的(统计表略)。利用分年龄段的百分比还可以画出折线图(图略)。从图上更可以清楚的显示出:随着年龄增加,睡眠时间逐渐减少的趋势。

上述统计分析方法比较简单。但是,仅靠简单的统计方法来处理问卷调查数据是十分可惜的,因为大量的数据信息还没有充分利用。所以,设计问卷时,就应该注意到,让收集到的调查数据能做多因素统计分析(如:回归分析,因子分析等)。下面是我帮助或指导有关单位做过的统计分析实例:

12005年国民体质监测的调查问卷内容中,包括了各人的文化程度,职业,工作、生活和体育锻炼等方面的许多问题。为了分析这些调查内容和各人的体质有什么关系,找出哪些因素对体质的好坏特别有关?在进行统计分析时,就需要把体质监测的指标和问卷调查的内容联系起来进行统计。

在成年组调查问卷内容中可进行计算的12个问题是受教育程度职业,平均每周工作时间,平均每天睡眠时间睡眠质量,平均每天步行时间,平均每天坐姿活动时间吸烟状况运动感受,平均每周锻炼次数,平均每次锻炼时间坚持锻炼时间。把这些作为X1, X2, ……X12,再每个人体质监测中的体质总分作为Y,就可以进行逐步回归分析计算。

某省成年男甲组4242人的数据用逐步回归分析计算结果是:从12个指标中依次选出了X 1 (受教育程度)X12 (坚持锻炼时间) X10(平均每周锻炼次数)X7(平均每天坐姿活动时间) 4个指标。得到回归方程:

Y = 21.85+ 1.02 X 1 -0.20 X7+ 0.34 X10 + 0.28 X12    F=101.92 (P<0.01)

复相关系数  R= 0.296                                                                                                          

根据回归方程的系数就可以知道:受教育程度高,平均每周锻炼次数多,坚持锻炼时间长,平均每天坐姿活动时间少的人体质总分就高。反之就低。而这个结论只做一般的调查表百分比统计,是得不到的。

2某市开展《超重与肥胖人群运动与营养综合干预实验研究》12周后,对参加者进行了问卷调查,内容有:每天进餐情况(分为:五分饱,八分饱,十分饱),每周快走次数(分为:3次以下,3次,4次,5次及以上),每次快走时间(分为:30分钟以内,3060分钟,6090分钟,90分钟以上),每次快走距离(分为:3公里以下,34公里,5公里及以上)等。

如果仅统计各个问卷内容的百分比,只能计算出如:每次快走时间30分钟以内的29人占22.1%3060分钟的47人占35.9%6090分钟的19人占14.5%90分钟以上的3627.5% 等等,这样的统计结果并不能说明什么问题。更无法分析出哪些是对减肥有效果的因素。

但是,把问卷调查的内容与参加12周实验后各人体重下降值联系起来统计,情况就不同了。如可以分别计算出:每周快走次数、每次快走时间等指标与体重下降值的相关系数。当计算出以上指标都和体重下降值呈中度或低度相关时,还可以进一步用回归分析的方法计算出标准回归系数或偏回归平方和来分析各指标对体重下降的作用大小。

本例有131人参加实验,为了用数学表达式来描述:饮食、运动量和降体重的关系。把调查表内容转换成数字后,选择了X1(每天进餐情况)、X2(每周快走次数)、X3(每次快走距离)与Y(体重下降值)计算出三元回归方程:

Y= 1.261.30 X1 +0.59 X2 +1.70 X3           F =13.855 (P<0.01)

复相关系数  R = 0.4966

从回归方程可以看到,在吃八分饱的情况下,增加

 
[文章评论()] [ 点击数:] [打印本网页] [关闭本窗口]  

相关内容
  • 体育科研数据统计处理系统 2011-05-17
  • 新书:《体育统计方法与应用》介绍 2011-04-30
  • 深圳市国民体质监测数据统计分析计算机系统 2010-05-18
  • 对制订选材标准统计方法的改进 2010-08-17
  • 体质指标随年龄变化趋势的统计处理方法 2010-07-31
  • 并不是一定要在SPSS里才能进行统计计算 2010-08-17
  • 统计是从事研究工作的基本功 2010-08-17
  • 体育统计在体育科研中的应用 2010-10-29
  • 回归分析方法在制定选材标准中的应用实例之二 2010-08-17

  • 网址:www.wldgzs.com

    粤ICP备10005906号

    网站管理